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An elliptic curve over a field k is (depending on your taste):

1 A complete nonsingular curve E of genus 1 over k together
with a point O ∈ E(k).

2 A nonsingular plane projective curve E of degree 3 together
with a point O ∈ E(k).

3 A nonsingular plane projective curve E of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.
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More familiarly, if char k 6= 2, 3, one can write an elliptic curve in
the form

Y 2 = X3 + aX + b

where ∆ = 4a3 + 27b2 6= 0 (along with a point at infinity
(0 : 1 : 0).)
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Given a set R, we write E(R) for those P = (x, y) with x, y ∈ R
and y2 = x3 + ax+ b.

There is an addition on E(k) that makes it into a group:
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Theorem

(Mordell-Weil) For any elliptic curve over a number field k, the
group E(k) is finitely generated.

1 This was shown by Mordell in the case k = Q in 1922.

2 For general number fields this is contained the thesis of Weil
(1928). (He actually proved: given any nonsingular projective
curve C over a number field k, one has Pic0(C) is finitely
generated.)
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Theorem

(Weak Mordell-Weil) For any elliptic curve E over a number field
k and any integer n, E(k)/nE(k) is finite.

The Mordell-Weil theorem follows from the Weak Mordell-Weil
theorem by a descent argument.

To prove the Weak Mordell-Weil theorem one uses Galois
cohomology, which we now review.
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For a number field k, we write kal for an algebraic closure of k.

We write Gk for Gal(kal/k).

We write E(kal)[n] for the n-torsion points of E(kal), i.e., the
points P ∈ E(kal) so that nP = 0.

Note that one has a natural action of Gk on E(kal) and on
E(kal)[n] given by σ · (x, y) = (xσ, yσ).
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Let G be a topological group and M a G-module where the action
of G on M is continuous.

One can define cohomology groups Hn(G,M) for all n ≥ 0, but
we only define them for n = 0, 1.

For n = 0, set

H0(G,M) = MG = {m ∈M : mσ = m for all σ ∈ G}.
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A crossed homomorphism is a continuous homomorphism
f : G→M satisfying

f(στ) = f(σ) + f(τ)σ

for all σ, τ ∈ G.

A principal crossed homomorphism is a continuous homomorphism
f : G→M satisfying

f(σ) = mσ −m

for some fixed m ∈M and all σ ∈ G.

Jim Brown Some background on elliptic curves and Galois cohomology



A crossed homomorphism is a continuous homomorphism
f : G→M satisfying

f(στ) = f(σ) + f(τ)σ

for all σ, τ ∈ G.

A principal crossed homomorphism is a continuous homomorphism
f : G→M satisfying

f(σ) = mσ −m

for some fixed m ∈M and all σ ∈ G.

Jim Brown Some background on elliptic curves and Galois cohomology



Define

H1(G,M) =
{crossed homomorphisms}

{principal crossed homomorphisms}
.

Theorem

Given an exact sequence of G-modules

0→M1 →M2 →M3 → 0,

there is a canonical exact sequence

0→MG
1 →MG

2 →MG
3 → H1(G,M1)→ H1(G,M2)→ H1(G,M3).
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Example

If G acts on M trivially then

1 H0(G,M) = M

2 H1(G,M) = Homgrp(G,M).

Example

If G = Gk and M = E(kal), then H0(G,M) = E(k).

On the other hand, H1(Gk, E(kal)) is not so easy...

In general we write Hn(k,M) to denote Hn(Gk,M).
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Theorem

For any integer n one has that the map n : E(kal)→ E(kal) is
surjective.

This theorem gives an exact sequence:

0→ E(kal)[n]→ E(kal) n→ E(kal)→ 0.

Which in turn gives an exact sequence:

0→ E(k)[n]→ E(k) n→ E(k)→ H1(k,E(kal)[n])

→ H1(k,E(kal)) n→ H1(k,E(kal)).
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From this long exact sequence in Galois cohomology one deduces
the exact sequence:

0→ E(k)/nE(k)→ H1(k,E(kal)[n])→ H1(k,E(kal))[n]→ 0.

Unfortunately, H1(k,E(kal)[n]) is not in general finite.

Goal: Replace H1(k,E(kal)[n]) with a group we can show is finite
and contains the image of E(k)/nE(k).
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For a place υ of k, consider E as an elliptic curve over kυ.

For each place υ one obtains a commutative diagram:

0 // E(k)/nE(k)

��

// H1(k, E(kal)[n])

��

// H1(k, E(kal))[n]

��

// 0

0 // E(kυ)/nE(kυ) // H1(kυ, E(kal
υ )[n]) // H1(kυ, E(kal

υ ))[n] // 0.

Define the n-Selmer group by

Seln(E/k) = {c ∈ H1(k,E(kal)[n]) : ∀υ, cυ comes from E(kυ)}

= ker

(
H1(k,E(kal)[n])→

∏
υ

H1(kυ, E(kal
υ ))

)
.

Jim Brown Some background on elliptic curves and Galois cohomology



For a place υ of k, consider E as an elliptic curve over kυ.

For each place υ one obtains a commutative diagram:

0 // E(k)/nE(k)

��

// H1(k, E(kal)[n])

��

// H1(k, E(kal))[n]

��

// 0

0 // E(kυ)/nE(kυ) // H1(kυ, E(kal
υ )[n]) // H1(kυ, E(kal

υ ))[n] // 0.

Define the n-Selmer group by

Seln(E/k) = {c ∈ H1(k,E(kal)[n]) : ∀υ, cυ comes from E(kυ)}

= ker

(
H1(k,E(kal)[n])→

∏
υ

H1(kυ, E(kal
υ ))

)
.

Jim Brown Some background on elliptic curves and Galois cohomology



For a place υ of k, consider E as an elliptic curve over kυ.

For each place υ one obtains a commutative diagram:

0 // E(k)/nE(k)

��

// H1(k, E(kal)[n])

��

// H1(k, E(kal))[n]

��

// 0

0 // E(kυ)/nE(kυ) // H1(kυ, E(kal
υ )[n]) // H1(kυ, E(kal

υ ))[n] // 0.

Define the n-Selmer group by

Seln(E/k) = {c ∈ H1(k,E(kal)[n]) : ∀υ, cυ comes from E(kυ)}

= ker

(
H1(k,E(kal)[n])→

∏
υ

H1(kυ, E(kal
υ ))

)
.

Jim Brown Some background on elliptic curves and Galois cohomology



For a place υ of k, consider E as an elliptic curve over kυ.

For each place υ one obtains a commutative diagram:

0 // E(k)/nE(k)

��

// H1(k, E(kal)[n])

��

// H1(k, E(kal))[n]

��

// 0

0 // E(kυ)/nE(kυ) // H1(kυ, E(kal
υ )[n]) // H1(kυ, E(kal

υ ))[n] // 0.

Define the n-Selmer group by

Seln(E/k) = {c ∈ H1(k,E(kal)[n]) : ∀υ, cυ comes from E(kυ)}

= ker

(
H1(k,E(kal)[n])→

∏
υ

H1(kυ, E(kal
υ ))

)
.

Jim Brown Some background on elliptic curves and Galois cohomology



Similarly, we define the Shafarevich-Tate group by

X(E/k) = ker

(
H1(k,E(kal))→

∏
υ

H1(kυ, E(kal
υ ))

)
.

1 It is conjectured that X is finite, but it is not known in
general.

2 There is a precise (conjectural) relationship between the order
of X and the rank of E(k).

3 With the proper geometric interpretation X provides a
measure of the failure of the local-global principle.
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Using the exact sequence

0→ E(k)/nE(k)→ H1(k,E(kal)[n])→ H1(k,E(kal))[n]→ 0

and the kernel-cokernel exact sequence we obtain:

0→ E(k)/nE(k)→ Seln(E/k)→X(E/k)[n]→ 0.
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Finally, in the case of elliptic curves one can show Seln(E/k) is
finite. In fact, it is actually computable! Thus we obtain the weak
Mordell-Weil theorem.
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Let E be an elliptic curve over k and let υ be a finite place.

Considering E as an elliptic curve over kυ, we can choose a
(minimal) equation for E so that the ai ∈ Oυ.

The curve obtained by taking the reduction of the ai modulo $υ

does not depend on the choice of the equation and we write Ẽυ for
this curve.

If Ẽυ is an elliptic curve, we say E has good reduction at υ.
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If Ẽυ is not an elliptic curve, we can still put a group structure on
Ẽns
υ .

If Ẽυ is a cuspidal cubic, then Ẽns
υ is isomorphic to Ga and we say

E has additive reduction at υ.

If Ẽυ is a nodal cubic and the tangent lines at the node are defined
over Fυ, then Ẽns

υ is isomorphic to Gm and we say E has split
multiplicative reduction at υ.

If Ẽυ is a nodal cubic and the tangent lines at the node are not
defined over Fυ, we say E has non-split multiplicative reduction at
υ.
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If Ẽυ is a nodal cubic and the tangent lines at the node are defined
over Fυ, then Ẽns
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Let qυ = #Fυ.

Let S be the finite set of places where E does not have good
reduction along with the archimedean places.

For υ /∈ S, set aυ = 1 + qυ −#Ẽυ(Fυ).

For such υ, set Lυ(E/k, s) = (1− aυq−sυ + q1−2s
υ )−1.
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For υ ∈ S, define

Lυ(E/k, s) =


1 E has additive reduction

(1− q−sυ )−1 E has split multiplicative reduction
(1 + q−sυ )−1 E has non-split multiplicative reduction
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Define
L(E/k, s) =

∏
υ-∞

Lυ(E/k, s).

This L function can be completed by adding the terms for the
infinite places.

Once completed, the L-function has the usual properties one
would expect.
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Note that one can actually write Lυ(E/k, s) for any finite υ as:

Lυ(E/k, s) = det(1− σ−1
υ q−sυ | (T`(E)∨)Iυ)−1.
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Weak BSD Conjecture

(Weak BSD) The rank of E(Q) is the order of vanishing of
L(E/Q, s) at s = 1.

The strong form of the conjecture that gives the first coefficient in
the Taylor expansion of L(E/Q, s) around s = 1 will be discussed
in the following talk. Note that it contains the order of the
Shafarevich-Tate group!

Jim Brown Some background on elliptic curves and Galois cohomology



Weak BSD Conjecture

(Weak BSD) The rank of E(Q) is the order of vanishing of
L(E/Q, s) at s = 1.

The strong form of the conjecture that gives the first coefficient in
the Taylor expansion of L(E/Q, s) around s = 1 will be discussed
in the following talk. Note that it contains the order of the
Shafarevich-Tate group!

Jim Brown Some background on elliptic curves and Galois cohomology


