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An elliptic curve over a field k is (depending on your taste):

@ A complete nonsingular curve E of genus 1 over k together
with a point O € E(k).

@ A nonsingular plane projective curve E of degree 3 together
with a point O € E(k).

© A nonsingular plane projective curve E of the form

Y2Z + a1 XY Z +asYZ? = X3+ ay X?Z + as X Z° + ag Z°.
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More familiarly, if char k # 2,3, one can write an elliptic curve in

the form
Y2=X34+aX+b

where A = 4a3 + 27b% # 0 (along with a point at infinity
(0:1:0).)
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Given a set R, we write E(R) for those P = (z,y) with z,y € R
and y? = 2% + ax +b.
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Given a set R, we write E(R) for those P = (z,y) with z,y € R
and y? = 2% + ax +b.
There is an addition on E(k) that makes it into a group:

Jim Brown Some background on elliptic curves and Galois cohomology



Given a set R, we write E(R) for those P = (z,y) with z,y € R

and y? = 2% + ax +b.

There is an addition on E(k) that makes it into a group:
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(Mordell-Weil) For any elliptic curve over a number field k, the
group E(k) is finitely generated.
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(Mordell-Weil) For any elliptic curve over a number field k, the
group E(k) is finitely generated.

@ This was shown by Mordell in the case £k = Q in 1922.
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(Mordell-Weil) For any elliptic curve over a number field k, the
group E(k) is finitely generated.

@ This was shown by Mordell in the case £k = Q in 1922.

@ For general number fields this is contained the thesis of Weil
(1928). (He actually proved: given any nonsingular projective
curve C' over a number field k, one has Pic(C) is finitely
generated.)
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(Weak Mordell-Weil) For any elliptic curve E over a number field
k and any integer n, E(k)/nE(k) is finite.
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(Weak Mordell-Weil) For any elliptic curve E over a number field
k and any integer n, E(k)/nE(k) is finite.

The Mordell-Weil theorem follows from the Weak Mordell-Weil
theorem by a descent argument.
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(Weak Mordell-Weil) For any elliptic curve E over a number field
k and any integer n, E(k)/nE(k) is finite.

The Mordell-Weil theorem follows from the Weak Mordell-Weil
theorem by a descent argument.

To prove the Weak Mordell-Weil theorem one uses Galois
cohomology, which we now review.
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For a number field k, we write k2! for an algebraic closure of k.
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For a number field k, we write k2! for an algebraic closure of k.

We write G, for Gal(k?!/k).

We write E(k2)[n] for the n-torsion points of E(k?), i.e., the
points P € E(k®) so that nP = 0.
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For a number field k, we write k2! for an algebraic closure of k.
We write G, for Gal(k?!/k).

We write E(k2)[n] for the n-torsion points of E(k?), i.e., the
points P € E(k®) so that nP = 0.

Note that one has a natural action of G} on E(k*) and on
E(k)[n] given by o - (z,y) = (27, y°).
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Let G be a topological group and M a G-module where the action
of G on M is continuous.
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Let G be a topological group and M a G-module where the action
of G on M is continuous.

One can define cohomology groups H™(G, M) for all n > 0, but
we only define them for n =0, 1.
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Let G be a topological group and M a G-module where the action
of G on M is continuous.

One can define cohomology groups H™(G, M) for all n > 0, but
we only define them for n =0, 1.

For n = 0, set

HY(G, M) =M% ={me M:m’=mforall ¢ € G}.
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A crossed homomorphism is a continuous homomorphism
f G — M satisfying

floT) = f(o) + f(1)7

for all o, 7 € G.
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A crossed homomorphism is a continuous homomorphism
f G — M satisfying

floT) = f(o) + f(1)7

for all o, 7 € G.

A principal crossed homomorphism is a continuous homomorphism
f G — M satisfying

flo)=m% —m

for some fixed m € M and all 0 € G.
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Define

{crossed homomorphisms}

HYG,M) = :
(G, M) {principal crossed homomorphisms}
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Define

{crossed homomorphisms}

HY (G, M) = :
(G, M) {principal crossed homomorphisms}

Theorem

Given an exact sequence of G-modules
0— My - My — M3 — 0,
there is a canonical exact sequence

0— M — M§ — M§ — HY (G, M) — H'(G, M) — H (G, Ms).
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If G acts on M trivially then
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If G acts on M trivially then
Q@ HYG,M)=M
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If G acts on M trivially then
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Q@ H(G, M) = Homg,,(G, M).
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If G acts on M trivially then
Q@ HYG,M)=M
Q@ H(G, M) = Homg,,(G, M).

If G = Gy and M = E(k?), then HY(G, M) = E(k).

On the other hand, H'(Gy, E(k®)) is not so easy...
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If G acts on M trivially then
Q@ HYG,M)=M
Q@ H(G, M) = Homg,,(G, M).

If G = Gy and M = E(k?), then HY(G, M) = E(k).

On the other hand, H'(Gy, E(k®)) is not so easy...

In general we write H"(k, M) to denote H"(Gj, M).
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For any integer n one has that the map n : E(k*) — E(k) is
surjective.
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For any integer n one has that the map n : E(k*) — E(k) is
surjective.

This theorem gives an exact sequence:

0 — E(k*)[n] — E(k*) 5 B(k™) — 0.
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For any integer n one has that the map n : E(k*) — E(k) is
surjective.

This theorem gives an exact sequence:

0 — E(k*)[n] — E(k*) 5 B(k™) — 0.

Which in turn gives an exact sequence:

0 — E(k)[n] — E(k) = E(k) — H'(k, E(k™)[n])
— HY(k, E(k™) & HY(k, E(K)).
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From this long exact sequence in Galois cohomology one deduces
the exact sequence:
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From this long exact sequence in Galois cohomology one deduces
the exact sequence:

0 — E(k)/nE(k) — H'(k, E(k™)[n]) — H'(k, E(k™))[n] — 0.
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From this long exact sequence in Galois cohomology one deduces
the exact sequence:

0 — E(k)/nE(k) — H'(k, E(k™)[n]) — H'(k, E(k™))[n] — 0.

Unfortunately, H'(k, E(k®)[n]) is not in general finite.
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From this long exact sequence in Galois cohomology one deduces
the exact sequence:

0 — E(k)/nE(k) — H'(k, E(k™)[n]) — H'(k, E(k™))[n] — 0.

Unfortunately, H'(k, E(k®)[n]) is not in general finite.

Goal: Replace H'(k, E(k*)[n]) with a group we can show is finite
and contains the image of E(k)/nE(k).

Jim Brown Some background on elliptic curves and Galois cohomology



For a place v of k, consider E as an elliptic curve over k,,.
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For a place v of k, consider E as an elliptic curve over k,,.

For each place v one obtains a commutative diagram:

0 — E(k)/nE(k) —— H'(k, E(k*)[n]) — H'(k, E(k™))[n] —0

| | |

0 —— E(kv)/nE(ky) — H'(ky, E(k3)[n]) — H'(ky, E(k2))[n] —— 0.
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For a place v of k, consider E as an elliptic curve over k,,.

For each place v one obtains a commutative diagram:
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Define the n-Selmer group by
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For a place v of k, consider E as an elliptic curve over k,,.

For each place v one obtains a commutative diagram:

0 — E(k)/nE(k) —— H'(k, E(k*)[n]) — H'(k, E(k™))[n] —0

| | |

0 —— E(kv)/nE(ky) — H'(ky, E(k3)[n]) — H'(ky, E(k2))[n] —— 0.

Define the n-Selmer group by

Sel,(E/k) = {c € H'(k, E(k*)[n]) : Vv, ¢, comes from E(k,)}

= ker (Hl(k E(k™)[n HH1 kU,E(kal))>
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Similarly, we define the Shafarevich-Tate group by
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Similarly, we define the Shafarevich-Tate group by

L(E/k) = ker (Hl(k:, E(k™)) — HHl(kU,E(kf}l))) :
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Similarly, we define the Shafarevich-Tate group by

L(E/k) = ker (Hl(k:, E(k™)) — HHl(kU,E(kf}l))) :

@ It is conjectured that LU is finite, but it is not known in
general.
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Similarly, we define the Shafarevich-Tate group by

L(E/k) = ker (Hl(k:, E(k™)) — HHl(k:U,E(kf}l))) :

@ It is conjectured that LU is finite, but it is not known in
general.

@ There is a precise (conjectural) relationship between the order
of LW and the rank of E(k).
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Similarly, we define the Shafarevich-Tate group by

L(E/k) = ker (Hl(k:, E(k™)) — HHl(k:U,E(kf}l))) :

@ It is conjectured that LU is finite, but it is not known in
general.

@ There is a precise (conjectural) relationship between the order
of LW and the rank of E(k).

© With the proper geometric interpretation LU provides a
measure of the failure of the local-global principle.
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Using the exact sequence

0 — E(k)/nE(k) — HY(k, E(k™)[n]) — H'(k, E(k™))[n] — 0

and the kernel-cokernel exact sequence we obtain:
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Using the exact sequence

0 — E(k)/nE(k) — H'(k, E(k")[n]) — H'(k, E(E™))[n] — 0
and the kernel-cokernel exact sequence we obtain:

0 — B(k)/nE(k) — Sel,(E/k) — W(E/k)[n] — 0.

Jim Brown Some background on elliptic curves and Galois cohomology



Finally, in the case of elliptic curves one can show Sel, (E/k) is
finite. In fact, it is actually computable! Thus we obtain the weak
Mordell-Weil theorem.
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Let E be an elliptic curve over k and let v be a finite place.
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Let E be an elliptic curve over k and let v be a finite place.

Considering E' as an elliptic curve over k,, we can choose a
(minimal) equation for E so that the a; € O,,.
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Let E be an elliptic curve over k and let v be a finite place.

Considering E' as an elliptic curve over k,, we can choose a
(minimal) equation for E so that the a; € O,,.

The curve obtained by taking the reduction of the a; modulo w,

does not depend on the choice of the equation and we write E,, for
this curve.

Jim Brown Some background on elliptic curves and Galois cohomology



Let E be an elliptic curve over k and let v be a finite place.

Considering E' as an elliptic curve over k,, we can choose a
(minimal) equation for E so that the a; € O,,.

The curve obtained by taking the reduction of the a; modulo w,
does not depend on the choice of the equation and we write E,, for

this curve.

If E, is an elliptic curve, we say E has good reduction at v.
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If E, is not an elliptic curve, we can still put a group structure on
E’s.
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If EU is not an elliptic curve, we can still put a group structure on
EDs.

If E,is a cuspidal cubic, then EES is isomorphic to G, and we say
E has additive reduction at v.
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If E, is not an elliptic curve, we can still put a group structure on
EDs.

If E,is a cuspidal cubic, then EES is isomorphic to G, and we say
E has additive reduction at v.

If EU is a nodal cubic and the tangent lines at the node are defined

over IF,,, then EES is isomorphic to G,,, and we say F has split
multiplicative reduction at v.
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If E, is not an elliptic curve, we can still put a group structure on
EDs.

If E,is a cuspidal cubic, then EES is isomorphic to G, and we say
E has additive reduction at v.

If EU is a nodal cubic and the tangent lines at the node are defined
over [, then E}® is isomorphic to G,, and we say E has split
multiplicative reduction at v.

If E, is a nodal cubic and the tangent lines at the node are not

defined over F,,, we say E has non-split multiplicative reduction at
v.
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Let q, = #IF,.
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Let q, = #IF,.

Let S be the finite set of places where E does not have good
reduction along with the archimedean places.
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Let q, = #IF,.

Let S be the finite set of places where E does not have good
reduction along with the archimedean places.

Forv ¢ S, seta, =1+ q, — #EU(FU).
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Let q, = #IF,.

Let S be the finite set of places where E does not have good
reduction along with the archimedean places.

Forv ¢ S, seta, =1+ q, — #EU(FU).

For such v, set L,(E/k,s) = (1 — ayq,* +qi~2%)~ L.

v
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For v € S, define
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For v € S, define

1 E' has additive reduction
Ly,(E/k,s)=<¢ (1—4q,%) E has split multiplicative reduction

-1
(14+¢,*)~! E has non-split multiplicative reduction
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Define
L(E/k,s) = [[ Lu(E/k, ).

v{oo
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Define
L(E/k,s) = [[ Lu(E/k, )

v{oo

This L function can be completed by adding the terms for the
infinite places.
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Define
L(E/k,s) = [[ Lu(E/k, )

v{oo

This L function can be completed by adding the terms for the
infinite places.

Once completed, the L-function has the usual properties one
would expect.
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Note that one can actually write L, (E/k, s) for any finite v as:

Lo(E/k,s) = det(1 — 0 'q;" | (T/(E)V)™) ",
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Weak BSD Conjecture

(Weak BSD) The rank of E(Q) is the order of vanishing of
L(E/Q,s) at s = 1.
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Weak BSD Conjecture

(Weak BSD) The rank of E(Q) is the order of vanishing of
L(E/Q,s) at s = 1.

The strong form of the conjecture that gives the first coefficient in
the Taylor expansion of L(E/Q,s) around s = 1 will be discussed
in the following talk. Note that it contains the order of the
Shafarevich-Tate group!
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