Math 333 Problem Set 9
Solutions

Be sure to list EVERYONE in the that you talk to about the homework!

1.

2.

(a) Show that the set {(a,0) : a € Z} is an ideal in Z x Z.

Proof. Set I = {(a,0) : a € Z}. Observe that 0zx7 = (0,0) € I.
Let (a,0),(b,0) € I and (¢,d) € Z x Z. We have (a,0) — (b,0) =
(a —b,0) € I and (a,0)(c,d) = (ac,0) € I. Thus, I is an ideal in
Z x 7 as desired. O

(b) Show that the set {(a,a) : a € Z} is not an ideal in Z x Z.
Set J ={(a,a):a € Z}. Then (1,1) € J and (1,2) € Z x Z, but
(1,1)(1,2) = (1,2) ¢ J. Thus, J is not an ideal in Z x Z.

Let R and S be rings and I C R, J C S ideals. Show that I x J is an
ideal in the ring R x S.

Proof. Since I and J are ideals, we have Op € I and Og € J so
(Or,0s) € I x J. Let (a,b),(c,d) € I x J and (r,s) € R x S.
We have (a,b) — (¢,d) = (a —¢,b—d) € I x J because I and J
are ideals. Similarly, we have (r,s)(a,b) = (ra,sb) € I x J and
(a,b)(r,s) = (ar,bs) € I x J again because I and J are ideals. Thus,
I x J is an ideal. 0J

Show that if I is an ideal in a field F', then I = (0p) or I = F.

Proof. If I = (0gr) we are done, so assume there exists a nonzero
element a € I. Since I C F and F is a field, we have « is a unit, i.e.,
there exists b € F' so that ab = 1p. The fact that [ is an ideal gives
lp=abel. Givenanyr € F wehaver =rlp €l andsol=F. [

4. List all the distinct principal ideals in Z/27Z x 7. /3Z.



We have the principal ideals are given by (([al2, [b]3)) for a = 0,1 and
b=10,1,2. The point is to see which of these is distinct. We have

(([0]2, [0]3)) = {([0]2, [0]3)}

(([0]2, [1]2)) = {([0]2, [0]3), ([0]2, [1]2), ([O]2, [2]2) }

(([0]2, [2]2)) = {([0]2, [0]3), ([0]2, [1]2), ([O]2, [2]2) }

(([1]2,[0]3)) = {([0]2, [0]3), ([1]2, [0]3) }

(([1]2,[1]3)) = {([0]2, [0]3), ([0]2, [1]3), ([0]2, [2]3), ([1]2, [0]3), ([1]2, [1]3), ([1]2, [2]3)}
(12, [2]3)) = {([0]2, [0]3), ([0]2, [1]5), ([0)2, [2]3), ([1]2, [0]3), ([1]2, [1]3), ([1]2, [2]3)}

Thus, the distinct ideals are given by (([0]2, [0]3)), (([0]2, [1]2)), (([1]2, [0]3)),
and (([1]2, [1]3)).

5. Let I be an ideal in R and S a subring of R. Prove that 1 NS is an
ideal in S.

Proof. Since I and S are both subrings, we have Op € I N S. Let
a,b € I'NS. Since I and S are subrings we have a — b € [ and
a—be S soa—belInNS. Letse S Since Sis a subring and
a,s € S, we have as,sa € S. Since I is an ideal in R and S C R, we
have as, sa € I. Thus, as,sa € INS and so NS is a subring of S. [

6. (a) Let I and J be ideals in a ring R. Define I +J = {i+j :i €
I,j € J}. Show this is an ideal in R that contains I and J.

Proof. Note that since I and J are ideals, Ogr € I N J so Ogp =
Or+0pel+J. Leta,bel+J,ie.,a=1+7j1 and b =13+ js
for some i1,i3 € I, j1,52 € J. We have a — b = (i1 + j1) —
(ig +j2) = (’il —’ig) + (]1 —jg) € I+ J. Let r € R. Then
ra = r(iy + j1) = ri1 +rj1 € [ + J since I and J are ideals.
Similarly, ar € I + J. Thus, I + J is an ideal in R. Moreover,
given ¢ € I we have i =i+ 0r € I + J so I C I + J. Similarly,
JCI+J. O

(b) Let a,b € Z and set d = ged(a, b). Show that (a) + (b) = (d).
Proof. Let r € {(a) 4 (b), i.e., r = ax + by for some z,y € Z. Since

d | a and d | b there exists s,t € Z so that a = ds and b = dt.
Thus, r = ax + by = d(sx + ty) € (d). Thus, (a) + (b) C (d).



Let z € (d), i.e., z = df for some f € Z. Since d = gcd(a,b)
there exists m,n € Z so that d = am + bn. Thus, z = df =
(am +bn)f = a(mf) +b(nf) € (a) + (b). Thus, (d) C (a) + (b).
Combining this with the above containment gives equality. O

7. Let F be a field. Show that every ideal in the ring F[z] is principal.

8.

Proof. Let I C F[x] be an ideal. If I = (0p) we are done, so assume
I # (0p). Let S ={f € I:degf > 0}. This set is nonempty since
I # (0p). Choose g € S of minimal degree. We claim that I = (g).
Clearly we have (g) C I since I is an ideal and g € I. Let h € I. Write
h = gq+r for ¢,r € Flx] with r = 0p or degr < degg. Observe that
since h € I and g € I we have r = h—gq € I. However, g has minimal
degree in I so it must be the case that » = 0p and so h € (g), i.e.,
I = (g) as claimed. Thus, every ideal in F[x] is principal. O

(a)

()

Prove that the set S of rational numbers (in lowest terms) with
odd denominators is a subring of Q.

Proof. We have 0 = 0/1 € S clearly. Let z,y € S, so x = ¢ and
y = 5 with b,d both odd. In particular, we know that bd is odd.
We have r —y = ¢ — 5 = %. Moreover, ry = 35 € S. Thus,

S is a subring of Q. O

Let I be the set of elements in S with even numerators. Prove
that [ is an ideal in S.

I

Proof. We clearly have 0 = 0/1 € I. Let v = §,y = §

and z = % € S be in lowest terms. We have z —y = ¢

“db;lbc. Observe since a and ¢ are both even, so is ad — be. Thus,

x—y € I. Moreover, we have zz = ?% = %. Observe that x and
z both have odd denominators, so zz has an odd denominator.
Moreover, since z has an even numerator so does zz. Thus, zz € I
and so [ is an ideal of S. O

o m

Show the set S/I consists of exactly two distinct cosets.



Proof. Let x = 7 € S. If ais even then x € I sox +1 = I.

Suppose that z = § with a odd, say a = 2k + 1. Then we have

w4 l=2HK0 47T =2% 414 T=1 41 Thus, $ =3 (mod )

if a is odd. Now observe that % — % = 1%51’. Since b is assumed

to be odd, we have 1 — b is even and so % —Le7 e, % =1
(mod I). Thus, if z = § with a odd we have x+1 = 1+1. Hence,

S/I={0+1,1+T}. O



